Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361840

RESUMO

Auxin is a general coordinator for growth and development throughout plant lifespan, acting in a concentration-dependent manner. Tryptophan aminotransferases (YUCCA) family catalyze the oxidative decarboxylation of indole-3-pyruvic acid (IPA) to form indole-3-acetic acid (IAA) and plays a critical role in auxin homeostasis. Here, 18 YUCCA family genes divided into four categories were identified from Mikania micrantha (M. micrantha), one of the world's most invasive plants. Five highly conserved motifs were characterized in these YUCCA genes (MmYUCs). Transcriptome analysis revealed that MmYUCs exhibited distinct expression patterns in different organs and five MmYUCs showed high expression levels throughout all the five tissues, implying that they may play dominant roles in auxin biosynthesis and plant development. In addition, MmYUC6_1 was overexpressed in DR5::GUS Arabidopsis line to explore its function, which resulted in remarkably increased auxin level and typical elevated auxin-related phenotypes including shortened roots and elongated hypocotyls in the transgenic plants, suggesting that MmYUC6_1 promoted IAA biosynthesis in Arabidopsis. Collectively, these findings provided comprehensive insight into the phylogenetic relationships, chromosomal distributions, expression patterns and functions of the MmYUC genes in M. micrantha, which would facilitate the study of molecular mechanisms underlying the fast growth of M. micrantha and preventing its invasion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mikania , Yucca , Arabidopsis/genética , Arabidopsis/metabolismo , Mikania/genética , Mikania/metabolismo , Yucca/genética , Yucca/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Am J Bot ; 108(4): 647-663, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33846972

RESUMO

PREMISE: Joshua trees (Yucca brevifolia and Y. jaegeriana) and their yucca moth pollinators (Tegeticula synthetica and T. antithetica) are a model system for studies of plant-pollinator coevolution and, they are thought to be one of the only cases in which there is compelling evidence for cospeciation driven by coevolution. Previous work attempted to evaluate whether divergence between the plant and their pollinators was contemporaneous. That work concluded that the trees diverged more than 5 million years ago-well before the pollinators. However, clear inferences were hampered by a lack of data from the nuclear genome and low genetic variation in chloroplast genes. As a result, divergence times in the trees could not be confidently estimated. METHODS: We present an analysis of whole chloroplast genome sequence data and RADseq data from >5000 loci in the nuclear genome. We developed a molecular clock for the Asparagales and the Agavoideae using multiple fossil calibration points. Using Bayesian inference, we produced new estimates for the age of the genus Yucca and for Joshua trees. We used calculated summary statistics describing genetic variation and used coalescent-based methods to estimate population genetic parameters. RESULTS: We find that the Joshua trees are moderately genetically differentiated, but that they diverged quite recently (~100-200 kya), and much more recently than their pollinators. CONCLUSIONS: The results argue against the notion that coevolution directly contributed to speciation in this system, suggesting instead that coevolution with pollinators may have reinforced reproductive isolation following initial divergence in allopatry.


Assuntos
Mariposas , Yucca , Animais , Teorema de Bayes , Mariposas/genética , Polinização , Isolamento Reprodutivo , Yucca/genética
3.
Plant Biol (Stuttg) ; 22(2): 233-242, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31603263

RESUMO

Climatic fluctuations during the Pleistocene influenced the geographical distribution of plant species across the southern region of California. Following an integrative approach, we combined genetic data analysis with Environmental Niche Models (ENMs) to assess the historical range expansion of Yucca schidigera, a long-lived desert perennial native of the Baja California Peninsula. We genotyped 240 individuals with seven nuclear microsatellite to investigate genetic diversity distribution across 13 populations. Indeed, we used Environmental Niche Models to examine the changes on the distribution of suitable climatic conditions for this species during the LIG (~120 ka), LGM (~22 ka) and Mid Holocene (~6 ka). We detected high genetic diversity across Y. schidigera populations (AR = 9.94 ± 0.38 SE; Hexp = 0.791 ± 0.011 SE) with genetic variation decreasing significantly with latitude (allelic richness: R 2 = 0.38, P = 0.023; expected heterocigosity: R2 = 0.32, P = 0.042). We observed low, but significant genetic differentiation (FST = 0.0678; P < 0.001) which was consistent with the parapatric distribution of the three genetic groupings detected by the Bayesian clustering algorithm. The ENMs suggest that suitable habitat for this species increased since the LGM. Our results support a range expansion of Y. schidigera across northwestern Baja California during the late Quaternary. Genetic data suggest that colonization of the current distribution followed a southward directionality as suitable climatic conditions became widely available in this region. High genetic variation across our sample suggests large historic effective population sizes for this section of the geographical range.


Assuntos
Ecossistema , Variação Genética , Filogenia , Yucca , Teorema de Bayes , México , Repetições de Microssatélites , Modelos Biológicos , Filogeografia , Yucca/classificação , Yucca/genética
4.
J Exp Bot ; 70(22): 6597-6609, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30870557

RESUMO

Crassulacean acid metabolism (CAM) is a carbon-concentrating mechanism that has evolved numerous times across flowering plants and is thought to be an adaptation to water-limited environments. CAM has been investigated from physiological and biochemical perspectives, but little is known about how plants evolve from C3 to CAM at the genetic or metabolic level. Here we take a comparative approach in analyzing time-course data of C3, CAM, and C3+CAM intermediate Yucca (Asparagaceae) species. RNA samples were collected over a 24 h period from both well-watered and drought-stressed plants, and were clustered based on time-dependent expression patterns. Metabolomic data reveal differences in carbohydrate metabolism and antioxidant response between the CAM and C3 species, suggesting that changes to metabolic pathways are important for CAM evolution and function. However, all three species share expression profiles of canonical CAM pathway genes, regardless of photosynthetic pathway. Despite differences in transcript and metabolite profiles between the C3 and CAM species, shared time-structured expression of CAM genes in both CAM and C3Yucca species suggests that ancestral expression patterns required for CAM may have pre-dated its origin in Yucca.


Assuntos
Ácidos Carboxílicos/metabolismo , Genes de Plantas , Yucca/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica , Fenótipo , Fotossíntese/genética
5.
Nat Prod Res ; 32(21): 2617-2620, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29304552

RESUMO

Yucca aloifolia, Y. aloifolia variegata, Y. elephantipes and Y. filamentosa were investigated. DNA sequencing was performed for the four plants and a genomic DNA fingerprint was obtained and provided. The cytotoxic activities against four human cancer cell lines were investigated. The ethanolic extracts of leaves of Y. aloifolia variegata prevailed, especially against liver cancer HepG-2 and breast cancer MCF-7. In vivo assessment of hepatoprotective activity in rats also revealed the hepatoprotective potential of the ethanolic extracts of the four plants against CCl4- induced rats' liver damage. Qualitative and quantitative analysis of the flavonoid and phenolic content of the promising species was performed using HPLC. The analysis identified and quantified 18 flavonoids and 19 phenolic acids in the different fractions of Y. aloifolia variegata, among which the major flavonoids were hesperidin and kaemp-3-(2-p-coumaroyl) glucose and the major phenolic acids were gallic acid and protocatechuic acid.


Assuntos
Impressões Digitais de DNA , Flavonoides/farmacologia , Fenóis/farmacologia , Yucca/química , Yucca/genética , Células A549 , Animais , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Egito , Flavonoides/isolamento & purificação , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Células MCF-7 , Masculino , Fenóis/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Yucca/classificação
6.
Am J Bot ; 103(10): 1717-1729, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27793858

RESUMO

PREMISE OF THE STUDY: Yucca species are ideal candidates for the study of coevolution due to the obligate mutualism they form with yucca moth pollinators (genera Tegeticula and Parategeticula). Yuccas are not the only species to exhibit a mutualism with yucca moths; the genus Hesperoyucca is pollinated by the California yucca moth (Tegeticula maculata). Relationships among yuccas, Hesperoyucca, and other members of subfamily Agavoideae are necessary to understand the evolution of this unique pollination syndrome. Here, we investigate evolutionary relationships of yuccas and closely related genera looking at the timing and origin of yucca moth pollination. METHODS: In this study, we sequenced the chloroplast genomes of 20 species in the subfamily Agavoideae (Asparagaceae) and three confamilial outgroup taxa to resolve intergeneric phylogenetic relationships of Agavoideae. We estimated divergence times using protein-coding genes from 67 chloroplast genomes sampled across monocots to determine the timing of the yucca moth pollination origin. KEY RESULTS: We confidently resolved intergeneric relationships in Agavoideae, demonstrating the origin of the yucca-yucca moth mutualism on two distinct lineages that diverged 27 million years ago. Comparisons of Yucca and Hesperoyucca divergence time to those of yucca moths (Tegeticula and Parategeticula, Prodoxidae) indicate overlapping ages for the origin of pollinating behavior in the moths and pollination by yucca moths in the two plant lineages. CONCLUSION: Whereas pollinating yucca moths have been shown to have a single origin within the Prodoxidae, there were independent acquisitions of active pollination on lineages leading to Yucca and Hesperoyucca within the Agavoideae.


Assuntos
Asparagaceae/fisiologia , Biodiversidade , Evolução Biológica , Genoma de Cloroplastos/genética , Mariposas/fisiologia , Polinização , Simbiose , Animais , Asparagaceae/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA , Yucca/genética , Yucca/fisiologia
7.
Am J Bot ; 103(10): 1730-1741, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27671531

RESUMO

PREMISE OF THE STUDY: Speciation is a complex process that can be shaped by many factors, from geographic isolation to interspecific interactions. In Joshua trees, selection from pollinators on style length has been hypothesized to contribute to the maintenance of differentiation between two hybridizing sister species. We used population genomics approaches to measure the extent of genetic differentiation between these species, test whether selection maintains differences between them, and determine whether genetic variants associated with style length show signatures of selection. METHODS: Using restriction-site-associated DNA (RAD)-sequencing, we identified 9516 single nucleotide polymorphisms (SNPs) across the Joshua tree genome. We characterized the genomic composition of trees in a narrow hybrid zone and used genomic scans to search for signatures of selection acting on these SNPs. We used a genome-wide association study to identify SNPs associated with variation in phenotypic traits, including style length, and asked whether those SNPs were overrepresented among the group under selection. KEY RESULTS: The two species were highly genetically differentiated (FST = 0.25), and hybrids were relatively rare in the hybrid zone. Approximately 20% of SNPs showed evidence of selection maintaining divergence. While SNPs associated with style length were overrepresented among those under selection (P << 0.0001), the same was true for SNPs associated with highly differentiated vegetative traits. CONCLUSIONS: The two species of Joshua tree are clearly genetically distinct, and selection is maintaining differences between them. We found that loci associated with differentiated traits were likely to be under selection. However, many traits other than style length appeared to be under selection. Together with the dearth of intermediate hybrids, these findings reveal that these taxa are more strongly diverged than previously suspected and that selection, likely on many targets, is maintaining separation where the two species meet and hybridize.


Assuntos
Genoma de Planta , Metagenômica , Mariposas/fisiologia , Polinização , Polimorfismo de Nucleotídeo Único , Simbiose , Yucca/fisiologia , Animais , Estudo de Associação Genômica Ampla , Nevada , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Yucca/genética
8.
Am J Bot ; 103(10): 1793-1802, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27578627

RESUMO

PREMISE OF THE STUDY: The role of floral scent in facilitating reproductive isolation between closely related plants remains poorly understood. Yucca brevifolia and Yucca jaegeriana are pollinated by different moth species in allopatry, but in a narrow contact zone, pollinator-host specificity breaks down, resulting in hybridization between species. We explored the chemical basis for reproductive isolation and hybridization in these Joshua trees by characterizing the floral scent of each species in allopatry, analyzing scent profiles from trees in the contact zone, and matching these data with genotypic and phenotypic data. METHODS: We analyzed floral volatiles using gas chromatography-mass spectrometry, tested for species divergence of scent profiles and classified trees in the contact zone as hybrid or either parental species. We used floral and vegetative morphological data and genotypic data to classify trees and analyzed whether certain trait combinations were more correlated than others with respect to assignment of trees and whether frequencies of classified tree types differed depending on which data set was used. KEY RESULTS: The Joshua tree floral scent included oxygenated 8-carbon compounds not reported for other yuccas. The two species differed (P < 0.001) in scent profiles. In the contact zone, many hybrids were found, and phenotypic traits were generally weakly correlated, which may be explained by extensive gene flow between species or by exposure to different selection pressures. CONCLUSIONS: Although the two Joshua tree species produce distinct floral scent profiles, it is insufficient to prevent attraction of associated pollinators to both hosts. Instead, floral morphology may be the key trait mediating gene flow between species.


Assuntos
Hibridização Genética , Isolamento Reprodutivo , Yucca/genética , Flores/anatomia & histologia , Flores/química , Flores/fisiologia , Repetições de Microssatélites , Nevada , Odorantes/análise , Feromônios/análise , Yucca/anatomia & histologia , Yucca/química , Yucca/metabolismo
9.
Plant Cell ; 28(8): 1795-814, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27385817

RESUMO

Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum.


Assuntos
Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/metabolismo , Yucca/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oxigenases de Função Mista/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Yucca/enzimologia , Yucca/genética
10.
J Exp Bot ; 67(5): 1369-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26717954

RESUMO

While the majority of plants use the typical C3 carbon metabolic pathway, ~6% of angiosperms have adapted to carbon limitation as a result of water stress by employing a modified form of photosynthesis known as Crassulacean acid metabolism (CAM). CAM plants concentrate carbon in the cells by temporally separating atmospheric carbon acquisition from fixation into carbohydrates. CAM has been studied for decades, but the evolutionary progression from C3 to CAM remains obscure. In order to better understand the morphological and physiological characteristics associated with CAM photosynthesis, phenotypic variation was assessed in Yucca aloifolia, a CAM species, Yucca filamentosa, a C3 species, and Yucca gloriosa, a hybrid species derived from these two yuccas exhibiting intermediate C3-CAM characteristics. Gas exchange, titratable leaf acidity, and leaf anatomical traits of all three species were assayed in a common garden under well-watered and drought-stressed conditions. Yucca gloriosa showed intermediate phenotypes for nearly all traits measured, including the ability to acquire carbon at night. Using the variation found among individuals of all three species, correlations between traits were assessed to better understand how leaf anatomy and CAM physiology are related. Yucca gloriosa may be constrained by a number of traits which prevent it from using CAM to as high a degree as Y. aloifolia. The intermediate nature of Y. gloriosa makes it a promising system in which to study the evolution of CAM.


Assuntos
Gases/metabolismo , Hibridização Genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Yucca/anatomia & histologia , Yucca/metabolismo , Variação Genética , Genótipo , Concentração de Íons de Hidrogênio , Repetições de Microssatélites/genética , Análise de Componente Principal , Yucca/genética
11.
Am J Bot ; 101(12): 2062-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25480703

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: According to Cope's 'law of the unspecialized' highly dependent species interactions are 'evolutionary dead ends,' prone to extinction because reversion to more generalist interactions is thought to be unlikely. Cases of extreme specialization, such as those seen between obligate mutualists, are cast as evolutionarily inescapable, inevitably leading to extinction rather than diversification of participating species. The pollination mutualism between Yucca plants and yucca moths (Tegeticula and Parategeticula) would seem to be locked into such an obligate mutualism. Yucca aloifolia populations, however, can produce large numbers of fruit lacking moth oviposition scars. Here, we investigate the pollination ecology of Y. aloifolia, in search of the non-moth pollination of a Yucca species.• METHODS: We perform pollinator exclusion studies on Yucca aloifolia and a sympatric yucca species, Y. filamentosa. We then perform postvisit exclusion treatments, an analysis of dissected fruits, and a fluorescent dye transfer experiment.• KEY RESULTS: As expected, Yucca filamentosa plants set fruit only when inflorescences were exposed to crepuscular and nocturnal pollinating yucca moths. In contrast, good fruit set was observed when pollinators were excluded from Y. aloifolia inflorescences from dusk to dawn, and no fruit set was observed when pollinators were excluded during the day. Follow up experiments indicated that European honeybees (Apis mellifera) were passively yet effectively pollinating Y. aloifolia flowers.• CONCLUSIONS: These results indicate that even highly specialized mutualisms may not be entirely obligate interactions or evolutionary dead ends.


Assuntos
Evolução Biológica , Mariposas , Polinização/genética , Simbiose/genética , Yucca/genética , Animais , Abelhas , Flores , Frutas , Filogenia , Reprodução/genética , Especificidade da Espécie , Yucca/fisiologia
12.
J Evol Biol ; 26(6): 1220-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23516990

RESUMO

In animal-pollinated plants, local adaptation to pollinator behaviour or morphology can restrict gene flow among plant populations; but gene flow may also prevent divergent adaptation. Here, we examine possible effects of gene flow on plant-pollinator trait matching in two varieties of Joshua tree (Agavaceae: Yucca brevifolia). The two varieties differ in strikingly in floral morphology, which matches differences in the morphology of their pollinators. However, this codivergence is not present at a smaller scale: within the two varieties of Joshua tree, variation in floral morphology between demes is not correlated with differences in moth morphology. We use population genetic data for Joshua tree and its pollinators to test the hypotheses that gene flow between Joshua tree populations is structured by pollinator specificity, and that gene flow within the divergent plant-pollinator associations 'swamps' fine-scale coadaptation. Our data show that Joshua tree populations are structured by pollinator association, but the two tree varieties are only weakly isolated - meaning that their phenotypic differences are maintained in the face of significant gene flow. Coalescent analysis of gene flow between the two Joshua tree types suggests that it may be shaped by asymmetric pollinator specificity, which has been observed in a narrow zone of sympatry. Finally, we find evidence suggesting that gene flow among Joshua tree sites may shape floral morphology within one plant-pollinator association, but not the other.


Assuntos
Fluxo Gênico , Pólen , Yucca/genética , Genes de Plantas , Fenótipo
13.
Mol Ecol ; 22(2): 437-49, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23190404

RESUMO

The angiosperms are by far the largest group of terrestrial plants. Their spectacular diversity is often attributed to specialized pollination. Obligate pollination mutualisms where both a plant and its pollinator are dependent upon one another for reproduction are thought to be prone to rapid diversification through co-evolution and pollinator isolation. However, few studies have evaluated the degree to which pollinators actually mediate reproductive isolation in these systems. Here, we examine evidence for hybridization and gene flow between two subspecies of Joshua tree (Yucca brevifolia brevifolia and Yucca brevifolia jaegeriana) pollinated by two sister species of yucca moth. Previous work indicated that the pollinators differ in host specificity, and DNA sequence data suggested asymmetric introgression between the tree subspecies. Through intensive sampling in a zone of sympatry, a large number of morphologically intermediate trees were identified. These included trees with floral characters typical of Y. b. jaegeriana, but vegetative features typical of Y. b. brevifolia. The opposite combination-Y. b. brevifolia flowers with Y. b. jaegeriana vegetative morphology-never occurred. Microsatellite genotyping revealed a high frequency of genetically admixed, hybrid trees. Coalescent-based estimates of migration indicated significant gene flow between the subspecies and that the direction of gene flow matches differences in pollinator host fidelity. The data suggest that pollinator behaviour determines the magnitude and direction of gene flow between the two subspecies, but that specialized pollination alone is not sufficient to maintain species boundaries. Natural selection may be required to maintain phenotypic differences in the face of ongoing gene flow.


Assuntos
Fluxo Gênico , Hibridização Genética , Polinização/genética , Yucca/genética , Animais , Núcleo Celular/genética , DNA de Plantas/genética , Flores/fisiologia , Genótipo , Repetições de Microssatélites , Mariposas/fisiologia , Isolamento Reprodutivo , Análise de Sequência de DNA , Especificidade da Espécie , Yucca/fisiologia
14.
Mol Phylogenet Evol ; 62(3): 898-906, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178365

RESUMO

Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.


Assuntos
Evolução Biológica , Mariposas/classificação , Mariposas/genética , Simbiose , Yucca/classificação , Yucca/genética , Animais , DNA Mitocondrial , Filogenia , Filogeografia
15.
PLoS One ; 6(10): e25628, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028785

RESUMO

Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community--Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes.


Assuntos
Evolução Molecular , Mariposas/genética , Yucca/genética , Animais , DNA de Plantas/genética , Feminino , Masculino , Modelos Teóricos , Paleontologia , Filogeografia , Dinâmica Populacional , Registros , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Estatística como Assunto
16.
Am J Bot ; 98(3): e67-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21613128

RESUMO

PREMISE OF THE STUDY: Microsatellite primers were characterized in Yucca brevifolia for use in population genetic studies and, particularly, analyses of gene flow between varieties. METHODS AND RESULTS: We characterized 12 microsatellite loci polymorphic in Yucca brevifolia by screening primers that were developed using an SSR-enriched library or which were previously described in Yucca filamentosa. Genetic analysis of four populations resulted in the mean number of alleles per locus ranging from 10.25 to 14.58 and mean expected heterozygosity from 0.78 to 0.88. Cross-amplification of all 12 loci was attempted in six additional yucca species. CONCLUSIONS: These loci should prove useful for population genetic research in Yucca brevifolia, and cross-amplification of these loci in related species suggests that they may be useful in studies of hybridization and introgression between species.


Assuntos
Loci Gênicos/genética , Repetições de Microssatélites/genética , Técnicas de Amplificação de Ácido Nucleico , Yucca/genética , Testes Genéticos , Genética Populacional , Especificidade da Espécie
17.
Mol Ecol ; 18(24): 4988-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20025657

RESUMO

Coevolutionary interactions between plants and their associated pollinators and seed dispersers are thought to have promoted the diversification of flowering plants (Raven 1977; Regal 1977; Stebbins 1981). The actual mechanisms by which pollinators could drive species diversification in plants are not fully understood. However, it is thought that pollinator host specialization can influence the evolution of reproductive isolation among plant populations because the pollinator's choice of host is what determines patterns of gene flow in its host plant, and host choice may also have important consequences on pollinator and host fitness (Grant 1949; Bawa 1992). In this issue of Molecular Ecology, Smith et al. (2009) present a very interesting study that addresses how host specialization affects pollinator fitness and patterns of gene flow in a plant host. Several aspects of this study match elements of a seminal mathematical model of plant-pollinator codivergence (Kiester et al. 1984) suggesting that reciprocal selection for matched plant and pollinator reproductive traits may lead to speciation in the host and its pollinator when there is strong host specialization and a pattern of geographic subdivision. Smith et al.'s study represents an important step to fill the gap in our understanding of how reciprocal selection may lead to speciation in coevolved plant-pollinator mutualisms.


Assuntos
Evolução Biológica , Fluxo Gênico , Aptidão Genética , Polinização , Animais , Mariposas/genética , Mariposas/fisiologia , Fenótipo , Especificidade da Espécie , Yucca/genética
18.
Mol Ecol ; 18(24): 5218-29, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19919591

RESUMO

Coevolution between flowering plants and their pollinators is thought to have generated much of the diversity of life on Earth, but the population processes that may have produced these macroevolutionary patterns remain unclear. Mathematical models of coevolution in obligate pollination mutualisms suggest that phenotype matching between plants and their pollinators can generate reproductive isolation. Here, we test this hypothesis using a natural experiment that examines the role of natural selection on phenotype matching between yuccas and yucca moths (Tegeticula spp.) in mediating reproductive isolation between two varieties of Joshua tree (Yucca brevifolia var. brevifolia and Y. brevifolia var. jaegeriana). Using passive monitoring techniques, DNA barcoding, microsatellite DNA genotyping, and sibship reconstruction, we track host specificity and the fitness consequences of host choice in a zone of sympatry. We show that the two moth species differ in their degree of host specificity and that oviposition on a foreign host plant results in the production of fewer offspring. This difference in host specificity between the two moth species mirrors patterns of chloroplast introgression from west to east between host varieties, suggesting that natural selection acting on pollinator phenotypes mediates gene flow and reproductive isolation between Joshua-tree varieties.


Assuntos
Evolução Biológica , Fluxo Gênico , Aptidão Genética , Mariposas/fisiologia , Polinização , Yucca/genética , Animais , Teorema de Bayes , Análise por Conglomerados , DNA Mitocondrial/genética , DNA de Plantas/genética , Feminino , Flores/genética , Flores/fisiologia , Genótipo , Larva/genética , Larva/fisiologia , Repetições de Microssatélites , Mariposas/genética , Oviposição , Fenótipo , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie
19.
Evolution ; 62(10): 2676-87, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18752609

RESUMO

Obligate pollination mutualisms--in which both plants and their pollinators are reliant upon one another for reproduction--represent some of the most remarkable coevolutionary interactions in the natural world. The intimacy and specificity of these interactions have led to the prediction that the plants and their pollinators may be prone to cospeciation driven by coevolution. Several studies have identified patterns of phylogenetic congruence that are consistent with this prediction, but it is difficult to determine the evolutionary process that underlies these patterns. Phylogenetic congruence might also be produced by extrinsic factors, such as a shared biogeographic history. We examine the biogeographic history of a putative case of codivergence in the obligate pollination mutualism between Joshua trees (Yucca brevifolia) and two sister species of pollinating yucca moths (Tegeticula spp.) We employ molecular phylogenetic methods and coalescent-based approaches, in combination with relaxed-clock estimates of absolute rates of molecular evolution, to analyze multi-locus sequence data from more than 30 populations of Y. brevifolia and its pollinators. The results indicate that the moth species diverged significantly (p < 0.01) more recently than their corresponding host populations, suggesting that the apparent codivergence is not an artifact of a shared biogeographic history.


Assuntos
Mariposas/genética , Filogenia , Polinização , Yucca/genética , Animais , Teorema de Bayes , DNA de Cloroplastos/química , Evolução Molecular , Especiação Genética , Geografia , Mariposas/fisiologia , Mutação , Análise de Sequência de DNA , Yucca/fisiologia
20.
Am Nat ; 171(6): 816-23, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18462130

RESUMO

Theory suggests that coevolution drives diversification in obligate pollination mutualism, but it has been difficult to disentangle the effects of coevolution from other factors. We test the hypothesis that differential selection by two sister species of pollinating yucca moths (Tegeticula spp.) drove divergence between two varieties of the Joshua tree (Yucca brevifolia) by comparing measures of differentiation in floral and vegetative features. We show that floral features associated with pollination evolved more rapidly than vegetative features extrinsic to the interaction and that a key floral feature involved in the mutualism is more differentiated than any other and matches equivalent differences in the morphology of the pollinating moths. A phylogenetically based, ancestral states reconstruction shows that differences in moth morphology arose in the time since they first became associated with Joshua trees. These results suggest that coevolution, rather than extrinsic environmental factors, has driven divergence in this obligate pollination mutualism.


Assuntos
Evolução Biológica , Mariposas/genética , Yucca/genética , Animais , Ecossistema , Flores/anatomia & histologia , Flores/fisiologia , Especiação Genética , Mariposas/anatomia & histologia , Mariposas/fisiologia , Oviposição , Polinização , Sudoeste dos Estados Unidos , Especificidade da Espécie , Yucca/anatomia & histologia , Yucca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...